Create an Azure virtual machine scale set using Terraform
Terraform enables the definition, preview, and deployment of cloud infrastructure. Using Terraform, you create configuration files using HCL syntax. The HCL syntax allows you to specify the cloud provider - such as Azure - and the elements that make up your cloud infrastructure. After you create your configuration files, you create an execution plan that allows you to preview your infrastructure changes before they're deployed. Once you verify the changes, you apply the execution plan to deploy the infrastructure.
Azure virtual machine scale sets allow you to configure identical VMs. The number of VM instances can adjust based on demand or a schedule. For more information, see Automatically scale a virtual machine scale set in the Azure portal.
In this article, you learn how to:
- Set up a Terraform deployment
- Use variables and outputs for Terraform deployment
- Create and deploy network infrastructure
- Create and deploy a virtual machine scale set and attach it to the network
- Create and deploy a jumpbox to connect to the VMs via SSH
1. Configure your environment
- Azure subscription: If you don't have an Azure subscription, create a free account before you begin.
Configure Terraform: If you haven't already done so, configure Terraform using one of the following options:
- Create an SSH key pair: For more information, see How to create and use an SSH public and private key pair for Linux VMs in Azure.
2. Implement the Terraform code
Create a directory in which to test the sample Terraform code and make it the current directory.
Create a file named
main.tf
and insert the following code:terraform { required_version = ">=0.12" required_providers { azurerm = { source = "hashicorp/azurerm" version = "~>2.0" } } } provider "azurerm" { features { resource_group { prevent_deletion_if_contains_resources = false } } } resource "azurerm_resource_group" "vmss" { name = var.resource_group_name location = var.location tags = var.tags } resource "random_string" "fqdn" { length = 6 special = false upper = false number = false } resource "azurerm_virtual_network" "vmss" { name = "vmss-vnet" address_space = ["10.0.0.0/16"] location = var.location resource_group_name = azurerm_resource_group.vmss.name tags = var.tags } resource "azurerm_subnet" "vmss" { name = "vmss-subnet" resource_group_name = azurerm_resource_group.vmss.name virtual_network_name = azurerm_virtual_network.vmss.name address_prefixes = ["10.0.2.0/24"] } resource "azurerm_public_ip" "vmss" { name = "vmss-public-ip" location = var.location resource_group_name = azurerm_resource_group.vmss.name allocation_method = "Static" domain_name_label = random_string.fqdn.result tags = var.tags } resource "azurerm_lb" "vmss" { name = "vmss-lb" location = var.location resource_group_name = azurerm_resource_group.vmss.name frontend_ip_configuration { name = "PublicIPAddress" public_ip_address_id = azurerm_public_ip.vmss.id } tags = var.tags } resource "azurerm_lb_backend_address_pool" "bpepool" { loadbalancer_id = azurerm_lb.vmss.id name = "BackEndAddressPool" } resource "azurerm_lb_probe" "vmss" { resource_group_name = azurerm_resource_group.vmss.name loadbalancer_id = azurerm_lb.vmss.id name = "ssh-running-probe" port = var.application_port } resource "azurerm_lb_rule" "lbnatrule" { resource_group_name = azurerm_resource_group.vmss.name loadbalancer_id = azurerm_lb.vmss.id name = "http" protocol = "Tcp" frontend_port = var.application_port backend_port = var.application_port backend_address_pool_ids = [azurerm_lb_backend_address_pool.bpepool.id] frontend_ip_configuration_name = "PublicIPAddress" probe_id = azurerm_lb_probe.vmss.id } resource "azurerm_virtual_machine_scale_set" "vmss" { name = "vmscaleset" location = var.location resource_group_name = azurerm_resource_group.vmss.name upgrade_policy_mode = "Manual" sku { name = "Standard_DS1_v2" tier = "Standard" capacity = 2 } storage_profile_image_reference { publisher = "Canonical" offer = "UbuntuServer" sku = "16.04-LTS" version = "latest" } storage_profile_os_disk { name = "" caching = "ReadWrite" create_option = "FromImage" managed_disk_type = "Standard_LRS" } storage_profile_data_disk { lun = 0 caching = "ReadWrite" create_option = "Empty" disk_size_gb = 10 } os_profile { computer_name_prefix = "vmlab" admin_username = var.admin_user admin_password = var.admin_password custom_data = file("web.conf") } os_profile_linux_config { disable_password_authentication = false } network_profile { name = "terraformnetworkprofile" primary = true ip_configuration { name = "IPConfiguration" subnet_id = azurerm_subnet.vmss.id load_balancer_backend_address_pool_ids = [azurerm_lb_backend_address_pool.bpepool.id] primary = true } } tags = var.tags } resource "azurerm_public_ip" "jumpbox" { name = "jumpbox-public-ip" location = var.location resource_group_name = azurerm_resource_group.vmss.name allocation_method = "Static" domain_name_label = "${random_string.fqdn.result}-ssh" tags = var.tags } resource "azurerm_network_interface" "jumpbox" { name = "jumpbox-nic" location = var.location resource_group_name = azurerm_resource_group.vmss.name ip_configuration { name = "IPConfiguration" subnet_id = azurerm_subnet.vmss.id private_ip_address_allocation = "Dynamic" public_ip_address_id = azurerm_public_ip.jumpbox.id } tags = var.tags } resource "azurerm_virtual_machine" "jumpbox" { name = "jumpbox" location = var.location resource_group_name = azurerm_resource_group.vmss.name network_interface_ids = [azurerm_network_interface.jumpbox.id] vm_size = "Standard_DS1_v2" storage_image_reference { publisher = "Canonical" offer = "UbuntuServer" sku = "16.04-LTS" version = "latest" } storage_os_disk { name = "jumpbox-osdisk" caching = "ReadWrite" create_option = "FromImage" managed_disk_type = "Standard_LRS" } os_profile { computer_name = "jumpbox" admin_username = var.admin_user admin_password = var.admin_password } os_profile_linux_config { disable_password_authentication = false } tags = var.tags }
Create a file named
variables.tf
to contain the project variables and insert the following code:variable "resource_group_name" { description = "Name of the resource group in which the resources will be created" default = "myResourceGroup" } variable "location" { default = "eastus" description = "Location where resources will be created" } variable "tags" { description = "Map of the tags to use for the resources that are deployed" type = map(string) default = { environment = "codelab" } } variable "application_port" { description = "Port that you want to expose to the external load balancer" default = 80 } variable "admin_user" { description = "User name to use as the admin account on the VMs that will be part of the VM scale set" default = "azureuser" } variable "admin_password" { description = "Default password for admin account" default = "ChangeMe123!" sensitive = true }
Create a file named
output.tf
to specify what values Terraform displays and insert the following code:output "vmss_public_ip_fqdn" { value = azurerm_public_ip.vmss.fqdn } output "jumpbox_public_ip_fqdn" { value = azurerm_public_ip.jumpbox.fqdn } output "jumpbox_public_ip" { value = azurerm_public_ip.jumpbox.ip_address }
Create a file named
web.conf
and insert the following code:#cloud-config packages: - nginx
3. Initialize Terraform
Run terraform init to initialize the Terraform deployment. This command downloads the Azure provider required to manage your Azure resources.
terraform init -upgrade
Key points:
- The
-upgrade
parameter upgrades the necessary provider plugins to the newest version that complies with the configuration's version constraints.
4. Create a Terraform execution plan
Run terraform plan to create an execution plan.
terraform plan -out main.tfplan
Key points:
- The
terraform plan
command creates an execution plan, but doesn't execute it. Instead, it determines what actions are necessary to create the configuration specified in your configuration files. This pattern allows you to verify whether the execution plan matches your expectations before making any changes to actual resources. - The optional
-out
parameter allows you to specify an output file for the plan. Using the-out
parameter ensures that the plan you reviewed is exactly what is applied.
5. Apply a Terraform execution plan
Run terraform apply to apply the execution plan to your cloud infrastructure.
terraform apply main.tfplan
Key points:
- The example
terraform apply
command assumes you previously ranterraform plan -out main.tfplan
. - If you specified a different filename for the
-out
parameter, use that same filename in the call toterraform apply
. - If you didn't use the
-out
parameter, callterraform apply
without any parameters.
6. Verify the results
From the output of the
terraform apply
command, you see values for the following:- Virtual machine FQDN
- Jumpbox FQDN
- Jumpbox IP address
Browse to the virtual machine URL to confirm a default page with the text Welcome to nginx!.
Use SSH to connect to the jumpbox VM using the user name defined in the variables file and the password you specified when you ran
terraform apply
. For example:ssh azureuser@<ip_address>
.
7. Clean up resources
When you no longer need the resources created via Terraform, do the following steps:
Run terraform plan and specify the
destroy
flag.terraform plan -destroy -out main.destroy.tfplan
Key points:
- The
terraform plan
command creates an execution plan, but doesn't execute it. Instead, it determines what actions are necessary to create the configuration specified in your configuration files. This pattern allows you to verify whether the execution plan matches your expectations before making any changes to actual resources. - The optional
-out
parameter allows you to specify an output file for the plan. Using the-out
parameter ensures that the plan you reviewed is exactly what is applied.
- The
Run terraform apply to apply the execution plan.
terraform apply main.destroy.tfplan
Troubleshoot Terraform on Azure
Troubleshoot common problems when using Terraform on Azure
Next steps
Feedback
https://aka.ms/ContentUserFeedback.
Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see:Submit and view feedback for