How to use Flink/Delta Connector

Important

This feature is currently in preview. The Supplemental Terms of Use for Microsoft Azure Previews include more legal terms that apply to Azure features that are in beta, in preview, or otherwise not yet released into general availability. For information about this specific preview, see Azure HDInsight on AKS preview information. For questions or feature suggestions, please submit a request on AskHDInsight with the details and follow us for more updates on Azure HDInsight Community.

By using Apache Flink and Delta Lake together, you can create a reliable and scalable data lakehouse architecture. The Flink/Delta Connector allows you to write data to Delta tables with ACID transactions and exactly once processing. It means that your data streams are consistent and error-free, even if you restart your Flink pipeline from a checkpoint. The Flink/Delta Connector ensures that your data isn't lost or duplicated, and that it matches the Flink semantics.

In this article, you learn how to use Flink-Delta connector.

  • Read the data from the delta table.
  • Write the data to a delta table.
  • Query it in Power BI.

What is Flink/Delta connector

Flink/Delta Connector is a JVM library to read and write data from Apache Flink applications to Delta tables utilizing the Delta Standalone JVM library. The connector provides exactly once delivery guarantees.

Flink/Delta Connector includes:

DeltaSink for writing data from Apache Flink to a Delta table. DeltaSource for reading Delta tables using Apache Flink.

Apache Flink-Delta Connector includes:

Depending on the version of the connector you can use it with following Apache Flink versions:

Connector's version	    Flink's version
0.4.x (Sink Only)	    1.12.0 <= X <= 1.14.5
0.5.0	                1.13.0 <= X <= 1.13.6
0.6.0	                X >= 1.15.3 
0.7.0	                X >= 1.16.1         --- We use this in Flink 1.17.0

For more information, see Flink/Delta Connector.

Prerequisites

  • HDInsight Flink 1.17.0 cluster on AKS
  • Flink-Delta Connector 0.7.0
  • Use MSI to access ADLS Gen2
  • IntelliJ for development

Read data from delta table

Delta Source can work in one of two modes, described as follows.

  • Bounded Mode Suitable for batch jobs, where we want to read content of Delta table for specific table version only. Create a source of this mode using the DeltaSource.forBoundedRowData API.

  • Continuous Mode Suitable for streaming jobs, where we want to continuously check the Delta table for new changes and versions. Create a source of this mode using the DeltaSource.forContinuousRowData API.

Example: Source creation for Delta table, to read all columns in bounded mode. Suitable for batch jobs. This example loads the latest table version.

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.data.RowData;
import org.apache.hadoop.conf.Configuration;

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // Define the source Delta table path
        String deltaTablePath_source = "abfss://container@account_name.dfs.core.windows.net/data/testdelta";

        // Create a bounded Delta source for all columns
        DataStream<RowData> deltaStream = createBoundedDeltaSourceAllColumns(env, deltaTablePath_source);

    public static DataStream<RowData> createBoundedDeltaSourceAllColumns(
            StreamExecutionEnvironment env,
            String deltaTablePath) {

        DeltaSource<RowData> deltaSource = DeltaSource
                .forBoundedRowData(
                        new Path(deltaTablePath),
                        new Configuration())
                .build();

        return env.fromSource(deltaSource, WatermarkStrategy.noWatermarks(), "delta-source");
    }

For other continuous model example, see Data Source Modes.

Writing to Delta sink

Delta Sink currently exposes the following Flink metrics:

Screenshot showing the table for Flink metrics.

Sink creation for nonpartitioned tables

In this example, we show how to create a DeltaSink and plug it to an existing org.apache.flink.streaming.api.datastream.DataStream.

import io.delta.flink.sink.DeltaSink;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.types.logical.RowType;
import org.apache.hadoop.conf.Configuration;

        // Define the sink Delta table path
        String deltaTablePath_sink = "abfss://container@account_name.dfs.core.windows.net/data/testdelta_output";

        // Define the source Delta table path
        RowType rowType = RowType.of(
                DataTypes.STRING().getLogicalType(),  // Date
                DataTypes.STRING().getLogicalType(),  // Time
                DataTypes.STRING().getLogicalType(),  // TargetTemp
                DataTypes.STRING().getLogicalType(),  // ActualTemp
                DataTypes.STRING().getLogicalType(),  // System
                DataTypes.STRING().getLogicalType(),  // SystemAge
                DataTypes.STRING().getLogicalType()   // BuildingID
        );

       createDeltaSink(deltaStream, deltaTablePath_sink, rowType);

public static DataStream<RowData> createDeltaSink(
            DataStream<RowData> stream,
            String deltaTablePath,
            RowType rowType) {
        DeltaSink<RowData> deltaSink = DeltaSink
                .forRowData(
                        new Path(deltaTablePath),
                        new Configuration(),
                        rowType)
                .build();
        stream.sinkTo(deltaSink);
        return stream;
    }

For other Sink creation example, see Data Sink Metrics.

Full code

Read data from a delta table and sink to another delta table.

package contoso.example;

import io.delta.flink.sink.DeltaSink;
import io.delta.flink.source.DeltaSource;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.types.logical.RowType;
import org.apache.hadoop.conf.Configuration;

public class DeltaSourceExample {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // Define the sink Delta table path
        String deltaTablePath_sink = "abfss://container@account_name.dfs.core.windows.net/data/testdelta_output";

        // Define the source Delta table path
        String deltaTablePath_source = "abfss://container@account_name.dfs.core.windows.net/data/testdelta";

        // Define the source Delta table path
        RowType rowType = RowType.of(
                DataTypes.STRING().getLogicalType(),  // Date
                DataTypes.STRING().getLogicalType(),  // Time
                DataTypes.STRING().getLogicalType(),  // TargetTemp
                DataTypes.STRING().getLogicalType(),  // ActualTemp
                DataTypes.STRING().getLogicalType(),  // System
                DataTypes.STRING().getLogicalType(),  // SystemAge
                DataTypes.STRING().getLogicalType()   // BuildingID
        );

        // Create a bounded Delta source for all columns
        DataStream<RowData> deltaStream = createBoundedDeltaSourceAllColumns(env, deltaTablePath_source);

        createDeltaSink(deltaStream, deltaTablePath_sink, rowType);

        // Execute the Flink job
        env.execute("Delta datasource and sink Example");
    }

    public static DataStream<RowData> createBoundedDeltaSourceAllColumns(
            StreamExecutionEnvironment env,
            String deltaTablePath) {

        DeltaSource<RowData> deltaSource = DeltaSource
                .forBoundedRowData(
                        new Path(deltaTablePath),
                        new Configuration())
                .build();

        return env.fromSource(deltaSource, WatermarkStrategy.noWatermarks(), "delta-source");
    }

    public static DataStream<RowData> createDeltaSink(
            DataStream<RowData> stream,
            String deltaTablePath,
            RowType rowType) {
        DeltaSink<RowData> deltaSink = DeltaSink
                .forRowData(
                        new Path(deltaTablePath),
                        new Configuration(),
                        rowType)
                .build();
        stream.sinkTo(deltaSink);
        return stream;
    }
}

Maven Pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>contoso.example</groupId>
    <artifactId>FlinkDeltaDemo</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <flink.version>1.17.0</flink.version>
        <java.version>1.8</java.version>
        <scala.binary.version>2.12</scala.binary.version>
        <hadoop-version>3.3.4</hadoop-version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>io.delta</groupId>
            <artifactId>delta-standalone_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>io.delta</groupId>
            <artifactId>delta-flink</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-parquet</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop-version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-runtime</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <appendAssemblyId>false</appendAssemblyId>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>
  1. Upload the jar to ABFS. Screenshot showing App mode jar files.

  2. Pass the job jar information in AppMode cluster.

    Screenshot showing cluster configuration.

    Note

    Always enable hadoop.classpath.enable while reading/writing to ADLS.

  3. Submit the cluster, you should be able to see the job in Flink UI.

    Screenshot showing Flink dashboard.

  4. Find Results in ADLS.

    Screenshot showing the output.

Power BI integration

Once the data is in delta sink, you can run the query in Power BI desktop and create a report.

  1. Open the Power BI desktop to get the data using ADLS Gen2 connector.

    Screenshot shows Power BI desktop.

    Screenshot shows ADLSGen 2 connector.

  2. URL of the storage account.

    Screenshot showing the URL of the storage account.

    Screenshot shows ADLS Gen2-details.

  3. Create M-query for the source and invoke the function, which queries the data from storage account. Refer Delta Power BI connectors.

  4. Once the data is readily available, you can create reports.

    Screenshot shows how to create reports.

References