Quickstart: Speech to text with the Azure OpenAI Whisper model

In this quickstart, you use the Azure OpenAI Whisper model for speech to text.

The file size limit for the Azure OpenAI Whisper model is 25 MB. If you need to transcribe a file larger than 25 MB, you can use the Azure AI Speech batch transcription API.

Prerequisites

Note

Currently, you must submit an application to access Azure OpenAI Service. To apply for access, complete this form.

Set up

Retrieve key and endpoint

To successfully make a call against Azure OpenAI, you'll need an endpoint and a key.

Variable name Value
AZURE_OPENAI_ENDPOINT This value can be found in the Keys & Endpoint section when examining your resource from the Azure portal. Alternatively, you can find the value in the Azure OpenAI Studio > Playground > Code View. An example endpoint is: https://aoai-docs.openai.azure.com/.
AZURE_OPENAI_API_KEY This value can be found in the Keys & Endpoint section when examining your resource from the Azure portal. You can use either KEY1 or KEY2.

Go to your resource in the Azure portal. The Endpoint and Keys can be found in the Resource Management section. Copy your endpoint and access key as you'll need both for authenticating your API calls. You can use either KEY1 or KEY2. Always having two keys allows you to securely rotate and regenerate keys without causing a service disruption.

Screenshot of the overview UI for an Azure OpenAI resource in the Azure portal with the endpoint & access keys location circled in red.

Create and assign persistent environment variables for your key and endpoint.

Environment variables

setx AZURE_OPENAI_API_KEY "REPLACE_WITH_YOUR_KEY_VALUE_HERE" 
setx AZURE_OPENAI_ENDPOINT "REPLACE_WITH_YOUR_ENDPOINT_HERE" 

REST API

In a bash shell, run the following command. You need to replace YourDeploymentName with the deployment name you chose when you deployed the Whisper model. The deployment name isn't necessarily the same as the model name. Entering the model name results in an error unless you chose a deployment name that is identical to the underlying model name.

curl $AZURE_OPENAI_ENDPOINT/openai/deployments/YourDeploymentName/audio/transcriptions?api-version=2024-02-01 \
 -H "api-key: $AZURE_OPENAI_API_KEY" \
 -H "Content-Type: multipart/form-data" \
 -F file="@./wikipediaOcelot.wav"

The format of your first line of the command with an example endpoint would appear as follows curl https://aoai-docs.openai.azure.com/openai/deployments/{YourDeploymentName}/audio/transcriptions?api-version=2024-02-01 \.

You can get sample audio files from the Azure AI Speech SDK repository at GitHub.

Important

For production, use a secure way of storing and accessing your credentials like Azure Key Vault. For more information about credential security, see the Azure AI services security article.

Output

{"text":"The ocelot, Lepardus paradalis, is a small wild cat native to the southwestern United States, Mexico, and Central and South America. This medium-sized cat is characterized by solid black spots and streaks on its coat, round ears, and white neck and undersides. It weighs between 8 and 15.5 kilograms, 18 and 34 pounds, and reaches 40 to 50 centimeters 16 to 20 inches at the shoulders. It was first described by Carl Linnaeus in 1758. Two subspecies are recognized, L. p. paradalis and L. p. mitis. Typically active during twilight and at night, the ocelot tends to be solitary and territorial. It is efficient at climbing, leaping, and swimming. It preys on small terrestrial mammals such as armadillo, opossum, and lagomorphs."}

PowerShell

Run the following command. You need to replace YourDeploymentName with the deployment name you chose when you deployed the Whisper model. The deployment name isn't necessarily the same as the model name. Entering the model name results in an error unless you chose a deployment name that is identical to the underlying model name.

# Azure OpenAI metadata variables
$openai = @{
    api_key     = $Env:AZURE_OPENAI_API_KEY
    api_base    = $Env:AZURE_OPENAI_ENDPOINT # your endpoint should look like the following https://YOUR_RESOURCE_NAME.openai.azure.com/
    api_version = '2024-02-01' # this may change in the future
    name        = 'YourDeploymentName' #This will correspond to the custom name you chose for your deployment when you deployed a model.
}

# Header for authentication
$headers = [ordered]@{
    'api-key' = $openai.api_key
}

$form = @{ file = get-item -path './wikipediaOcelot.wav' }

# Send a completion call to generate an answer
$url = "$($openai.api_base)/openai/deployments/$($openai.name)/audio/transcriptions?api-version=$($openai.api_version)"

$response = Invoke-RestMethod -Uri $url -Headers $headers -Form $form -Method Post -ContentType 'multipart/form-data'
return $response.text

You can get sample audio files from the Azure AI Speech SDK repository at GitHub.

Important

For production, use a secure way of storing and accessing your credentials like The PowerShell Secret Management with Azure Key Vault. For more information about credential security, see the Azure AI services security article.

Output

The ocelot, Lepardus paradalis, is a small wild cat native to the southwestern United States, Mexico, and Central and South America. This medium-sized cat is characterized by solid black spots and streaks on its coat, round ears, and white neck and undersides. It weighs between 8 and 15.5 kilograms, 18 and 34 pounds, and reaches 40 to 50 centimeters 16 to 20 inches at the shoulders. It was first described by Carl Linnaeus in 1758. Two subspecies are recognized, L. p. paradalis and L. p. mitis. Typically active during twilight and at night, the ocelot tends to be solitary and territorial. It is efficient at climbing, leaping, and swimming. It preys on small terrestrial mammals such as armadillo, opossum, and lagomorphs.

Python

Prerequisites

Set up

Install the OpenAI Python client library with:

pip install openai
  1. Create a new Python file called quickstart.py. Then open it up in your preferred editor or IDE.

  2. Replace the contents of quickstart.py with the following code. Modify the code to add your deployment name:

    import os
    from openai import AzureOpenAI
        
    client = AzureOpenAI(
        api_key=os.getenv("AZURE_OPENAI_API_KEY"),  
        api_version="2024-02-01",
        azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
    )
    
    deployment_id = "YOUR-DEPLOYMENT-NAME-HERE" #This will correspond to the custom name you chose for your deployment when you deployed a model."
    audio_test_file = "./wikipediaOcelot.wav"
    
    result = client.audio.transcriptions.create(
        file=open(audio_test_file, "rb"),            
        model=deployment_id
    )
    
    print(result)

Run the application with the python command on your quickstart file:

You can get sample audio files from the Azure AI Speech SDK repository at GitHub.

Important

For production, use a secure way of storing and accessing your credentials like Azure Key Vault. For more information about credential security, see the Azure AI services security article.

Output

{"text":"The ocelot, Lepardus paradalis, is a small wild cat native to the southwestern United States, Mexico, and Central and South America. This medium-sized cat is characterized by solid black spots and streaks on its coat, round ears, and white neck and undersides. It weighs between 8 and 15.5 kilograms, 18 and 34 pounds, and reaches 40 to 50 centimeters 16 to 20 inches at the shoulders. It was first described by Carl Linnaeus in 1758. Two subspecies are recognized, L. p. paradalis and L. p. mitis. Typically active during twilight and at night, the ocelot tends to be solitary and territorial. It is efficient at climbing, leaping, and swimming. It preys on small terrestrial mammals such as armadillo, opossum, and lagomorphs."}

Clean up resources

If you want to clean up and remove an Azure OpenAI resource, you can delete the resource. Before deleting the resource, you must first delete any deployed models.

Next steps